روش تکراری برای پیداکردن جواب های متقارن و پادمتقارن معادله ی ماتریسی خطی axb+cyd=e

thesis
abstract

در این پایان نامه دو روش تکراری برای به دست آوردن جواب های متقارن و پادمتقارن معادله ی ماتریسی خطی ‎$ axb+cyd=e $‎ ارائه می شود. به وسیله ی این دو روش تکراری، حل پذیری جواب های متقارن و پادمتقارن برای معادله ی ماتریسی خطی ‎$ axb+cyd=e $‎ به طور خودکار می تواند تعیین شود. زمانی که این معادله ی ماتریسی خطی جواب های متقارن ‎(پادمتقارن)‎ دارد، آن گاه برای هر جفت ماتریس متقارن ‎(پادمتقارن)‎ اولیه ی ‎$ x_0 $‎ و ‎$ y_0 $‎، جواب های متقارن ‎(پادمتقارن)‎ می توانند با گام های تکراری متناهی در غیاب خطای گردکردن، به دست آیند. همچنین جواب های با کمترین نرم را می توان به وسیله ی انتخاب نوع خاصی از ماتریس های اولیه به دست آورد. جواب تقریبی بهین یکتای ‎$ widehat{x} $‎ و ‎$ widehat{y} $‎را نیز می توان با داشتن ماتریس های ‎$ ar{x} $‎ و ‎$ ar{y} $‎ به وسیله ی یافتن جواب با کمترین نرم فروبنیوس معادله ی ماتریسی خطی جدید ‎$ awidetilde{x}b+cwidetilde{y}d=widetilde{e} $‎ که‎ $ widetilde{e}=e-aar{x}b-car{y}d $‎ را پیدا کرد. با مثال های عددی، کارآیی روش های تکراری نشان داده شده است.

similar resources

یک روش تکراری برای جواب پادمتقارن و جواب تقریبی بهینه ی معادله ی ماتریسی axb=c

با استفاده از روش های تکراری پادمتقارن و معادلات ماتریسی متشابه جواب تقریبی بهینه را برای معادله ی ماتریسی axb=c را از روی ماتریس های معین a و b و c، پیدا می کنیم، به طوری که هدف تعیین ماتریس x می باشد.

روش‌های تکراری برای محصور کردن مجموعه جواب معادله ماتریسی سیلوستر پارامتری

در این مقاله، معادله ماتریسی سیلوستر پارامتری (A(p)X+XB(p)=C(p را که عناصر آن توابعی خطی از پارامترهای متغیر در بازه‌ها هستند بررسی می‌کنیم. ابتدا چند ویژگی از مجموعه جواب این معادله پارامتری را بیان می‌کنیم و سپس به کمک این ویژگی‌ها چند شرط کافی برای کرانداری مجموعه جواب ارائه می‌کنیم. پس از آن بر پایه خصوصیات مطرح شده برای مجموعه جواب، دو روش تکراری برای یافتن حصارهایی برای آن معرفی می‌کنیم. ...

full text

روش های تکراری برای حل معادله ماتریسی خطی و دستگاه معادلات ماتریسی خطی

بسیاری از مسائل علوم کاربردی و مهندسی منجر به معادلات ماتریسی خطی میشوند. به طورکلی معادلات ماتریسی خطی را میتوان با استفاده از روشهای مستقیم و روشهای تکراری حل کرد. روشهای مستقیم به دلیل حجم زیاد محاسبات و همچنین ذخیرهسازی و سرعت محدود کامپیوترها برای حل معادلات ماتریسی خطی با ماتریس ضرایب بزرگ، به ویژه معادلات ماتریسی خطی که ماتریس ضرایب آنها تنک هستند، مناسب نیستند. برای این گونه معادلات مات...

روش های تکراری برای حل معادله ماتریسی

در فصل اول این پایان نامه تعاریف، نکات و قضایایی که در فصول بعدی لازم است را مرور می کنیم. در فصل دوم روش نیوتن و برنولی را برای یک معادله ماتریسی درجه دوم تعمیم می دهیم. با در نظر گرفتن ماتریس های ضرایب به شکل m-ماتریس، شرایط کافی برای وجود جواب دقیق را فراهم می آوریم. علاوه بر این نشان می دهیم که روش نیوتن و برنولی تحت شرایط کافی پیشنهادی با یک ماتریس صفر اولیه به جواب دقیق همگرا خواهد شد. در...

یک الگوریتم خطی برای مساله ی پیداکردن هسته ی درخت های بازه ای وزندار

In this paper we consider the problem of finding a core of weighted interval trees.  A core of an interval graph is a path contains some intervals of graph so that the sum of distances from all intervals to this path is minimized. We show that intervals on core of a tree should be maximal, then a linear time algorithm is presented to find the core of interval trees

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023